Monday 21 August 2017

Arima Vs Moving Average


Os modelos ARIMA são, em teoria, a classe mais geral de modelos para prever uma série de tempo que pode ser feita de 8220stationary8221 por diferenciação (se necessário), talvez Em conjunto com transformações não-lineares, como logging ou deflação (se necessário). Uma variável aleatória que é uma série de tempo é estacionária se suas propriedades estatísticas são todas constantes ao longo do tempo. Uma série estacionária não tem tendência, suas variações em torno de sua média têm uma amplitude constante, e ele se move de forma consistente. Isto é, os seus padrões de tempo aleatório a curto prazo têm sempre o mesmo aspecto num sentido estatístico. Esta última condição significa que suas autocorrelações (correlações com seus próprios desvios prévios em relação à média) permanecem constantes ao longo do tempo, ou de forma equivalente, que seu espectro de poder permanece constante ao longo do tempo. Uma variável aleatória desta forma pode ser vista (como de costume) como uma combinação de sinal e ruído, eo sinal (se for aparente) poderia ser um padrão de reversão média rápida ou lenta, ou oscilação sinusoidal, ou rápida alternância no sinal , E poderia também ter uma componente sazonal. Um modelo ARIMA pode ser visto como um 8220filter8221 que tenta separar o sinal do ruído, e o sinal é então extrapolado para o futuro para obter previsões. A equação de previsão de ARIMA para uma série de tempo estacionária é uma equação linear (isto é, tipo de regressão) na qual os preditores consistem em atrasos da variável dependente e / ou atrasos dos erros de previsão. Ou seja: Valor previsto de Y uma constante e / ou uma soma ponderada de um ou mais valores recentes de Y e / ou uma soma ponderada de um ou mais valores recentes dos erros. Se os preditores consistem apenas em valores defasados ​​de Y., é um modelo autoregressivo puro (8220 auto-regressado8221), que é apenas um caso especial de um modelo de regressão e que poderia ser equipado com software de regressão padrão. Por exemplo, um modelo autoregressivo de primeira ordem (8220AR (1) 8221) para Y é um modelo de regressão simples no qual a variável independente é apenas Y retardada por um período (LAG (Y, 1) em Statgraphics ou YLAG1 em RegressIt). Se alguns dos preditores são defasagens dos erros, um modelo ARIMA não é um modelo de regressão linear, porque não há maneira de especificar o erro 8222 como uma variável independente: os erros devem ser calculados em base período a período Quando o modelo é ajustado aos dados. Do ponto de vista técnico, o problema com o uso de erros defasados ​​como preditores é que as previsões do modelo não são funções lineares dos coeficientes. Mesmo que sejam funções lineares dos dados passados. Portanto, os coeficientes em modelos ARIMA que incluem erros retardados devem ser estimados por métodos de otimização não-lineares (8220hill-climbing8221) ao invés de apenas resolver um sistema de equações. O acrônimo ARIMA significa Auto-Regressive Integrated Moving Average. Lags das séries estacionalizadas na equação de previsão são chamados de termos quotautorregressivos, os atrasos dos erros de previsão são chamados de quotmoving termos médios e uma série de tempo que precisa ser diferenciada para ser estacionária é dito ser uma versão quotintegrada de uma série estacionária. Modelos de Random-walk e tendência aleatória, modelos autorregressivos e modelos de suavização exponencial são casos especiais de modelos ARIMA. Um modelo ARIMA não sazonal é classificado como um modelo quotARIMA (p, d, q) quot, onde: p é o número de termos autorregressivos, d é o número de diferenças não sazonais necessárias para a estacionaridade e q é o número de erros de previsão defasados ​​em A equação de predição. A equação de previsão é construída como se segue. Em primeiro lugar, vamos dizer a d diferença de Y. o que significa: Note que a segunda diferença de Y (o caso d2) não é a diferença de 2 períodos atrás. Pelo contrário, é a primeira diferença de primeira diferença. Que é o análogo discreto de uma segunda derivada, isto é, a aceleração local da série em vez da sua tendência local. Em termos de y. A equação de previsão geral é: Aqui os parâmetros da média móvel (9528217s) são definidos de modo que seus sinais sejam negativos na equação, seguindo a convenção introduzida por Box e Jenkins. Alguns autores e software (incluindo a linguagem de programação R) definem-los para que eles tenham mais sinais em vez disso. Quando números reais são conectados à equação, não há ambigüidade, mas é importante saber qual convenção seu software usa quando está lendo a saída. Muitas vezes os parâmetros são indicados por AR (1), AR (2), 8230 e MA (1), MA (2), 8230, etc. Para identificar o modelo ARIMA apropriado para Y. você começa por determinar a ordem de diferenciação (D) a necessidade de estacionarizar a série e remover as características brutas da sazonalidade, talvez em conjunto com uma transformação estabilizadora de variância, como a extração madeireira ou a deflação. Se você parar neste ponto e prever que a série diferenciada é constante, você tem apenas montado uma caminhada aleatória ou modelo de tendência aleatória. No entanto, a série estacionária pode ainda ter erros autocorrelacionados, sugerindo que algum número de termos AR (p 8805 1) e / ou alguns termos MA (q 8805 1) também são necessários na equação de previsão. O processo de determinar os valores de p, d e q que são melhores para uma dada série temporal será discutido em seções posteriores das notas (cujos links estão no topo desta página), mas uma prévia de alguns dos tipos De modelos não-sazonais ARIMA que são comumente encontrados é dada abaixo. ARIMA (1,0,0) modelo autoregressivo de primeira ordem: se a série é estacionária e autocorrelacionada, talvez possa ser predita como um múltiplo de seu próprio valor anterior, mais uma constante. A equação de previsão neste caso é 8230, que é regressão Y sobre si mesma retardada por um período. Este é um modelo 8220ARIMA (1,0,0) constant8221. Se a média de Y for zero, então o termo constante não seria incluído. Se o coeficiente de inclinação 981 1 for positivo e menor que 1 em magnitude (ele deve ser menor que 1 em magnitude se Y estiver parado), o modelo descreve o comportamento de reversão de média no qual o valor do próximo período deve ser 981 vezes 1 Longe da média como valor deste período. Se 981 1 for negativo, ele prevê o comportamento de reversão de média com alternância de sinais, isto é, também prevê que Y estará abaixo do próximo período médio se estiver acima da média neste período. Em um modelo autorregressivo de segunda ordem (ARIMA (2,0,0)), haveria um termo Y t-2 à direita também, e assim por diante. Dependendo dos sinais e magnitudes dos coeficientes, um modelo ARIMA (2,0,0) poderia descrever um sistema cuja reversão média ocorre de forma sinusoidal oscilante, como o movimento de uma massa sobre uma mola submetida a choques aleatórios . Se a série Y não for estacionária, o modelo mais simples possível para ela é um modelo randômico randômico, que pode ser considerado como um caso limitante de um modelo AR (1) em que o modelo autorregressivo Coeficiente é igual a 1, ou seja, uma série com reversão média infinitamente lenta. A equação de predição para este modelo pode ser escrita como: onde o termo constante é a variação média período-período (ou seja, a deriva a longo prazo) em Y. Este modelo poderia ser montado como um modelo de regressão sem interceptação em que o A primeira diferença de Y é a variável dependente. Uma vez que inclui (apenas) uma diferença não sazonal e um termo constante, é classificada como um modelo de ARIMA (0,1,0) com constante. quot O modelo randômico-sem-desvio seria um ARIMA (0,1, 0) sem constante ARIMA (1,1,0) modelo autoregressivo de primeira ordem diferenciado: Se os erros de um modelo de caminhada aleatória são autocorrelacionados, talvez o problema possa ser corrigido adicionando um lag da variável dependente à equação de predição - Eu Pela regressão da primeira diferença de Y sobre si mesma retardada por um período. Isto resultaria na seguinte equação de predição: que pode ser rearranjada para Este é um modelo autorregressivo de primeira ordem com uma ordem de diferenciação não sazonal e um termo constante - isto é. Um modelo ARIMA (1,1,0). ARIMA (0,1,1) sem suavização exponencial simples constante: Uma outra estratégia para corrigir erros autocorrelacionados em um modelo de caminhada aleatória é sugerida pelo modelo de suavização exponencial simples. Lembre-se que para algumas séries temporais não-estacionárias (por exemplo, as que exibem flutuações barulhentas em torno de uma média de variação lenta), o modelo de caminhada aleatória não funciona tão bem quanto uma média móvel de valores passados. Em outras palavras, ao invés de tomar a observação mais recente como a previsão da próxima observação, é melhor usar uma média das últimas observações para filtrar o ruído e estimar com mais precisão a média local. O modelo de suavização exponencial simples usa uma média móvel exponencialmente ponderada de valores passados ​​para conseguir esse efeito. A equação de predição para o modelo de suavização exponencial simples pode ser escrita em um número de formas matematicamente equivalentes. Uma das quais é a chamada 8220error correction8221, na qual a previsão anterior é ajustada na direção do erro que ela fez: Como e t-1 Y t-1 - 374 t-1 por definição, isso pode ser reescrito como : Que é uma equação de previsão ARIMA (0,1,1) sem constante com 952 1 1 - 945. Isso significa que você pode ajustar uma suavização exponencial simples especificando-a como um modelo ARIMA (0,1,1) sem Constante, eo coeficiente MA (1) estimado corresponde a 1-menos-alfa na fórmula SES. Lembre-se que no modelo SES, a idade média dos dados nas previsões de 1 período antecipado é de 1 945, o que significa que tendem a ficar aquém das tendências ou pontos de viragem em cerca de 1 945 períodos. Segue-se que a média de idade dos dados nas previsões de 1 período de um modelo ARIMA (0,1,1) sem constante é de 1 (1 - 952 1). Assim, por exemplo, se 952 1 0,8, a idade média é 5. Quando 952 1 aproxima-se de 1, o modelo ARIMA (0,1,1) sem constante torna-se uma média móvel de muito longo prazo e como 952 1 Aproxima-se 0 torna-se um modelo randômico-caminhada-sem-deriva. Nos dois modelos anteriores discutidos acima, o problema dos erros autocorrelacionados em um modelo de caminhada aleatória foi fixado de duas maneiras diferentes: adicionando um valor defasado da série diferenciada Para a equação ou adicionando um valor defasado do erro de previsão. Qual abordagem é a melhor Uma regra para esta situação, que será discutida em mais detalhes mais adiante, é que a autocorrelação positiva é geralmente melhor tratada pela adição de um termo AR para o modelo e autocorrelação negativa é geralmente melhor tratada pela adição de um MA termo. Nas séries econômicas e de negócios, a autocorrelação negativa muitas vezes surge como um artefato de diferenciação. Portanto, o modelo ARIMA (0,1,1), no qual a diferenciação é acompanhada por um termo de MA, é mais freqüentemente usado do que um modelo de auto-correlação positiva. Modelo ARIMA (1,1,0). ARIMA (0,1,1) com suavização exponencial simples constante com crescimento: Ao implementar o modelo SES como um modelo ARIMA, você realmente ganha alguma flexibilidade. Em primeiro lugar, o coeficiente MA (1) estimado pode ser negativo. Isto corresponde a um factor de suavização maior do que 1 num modelo SES, o que normalmente não é permitido pelo procedimento de ajustamento do modelo SES. Em segundo lugar, você tem a opção de incluir um termo constante no modelo ARIMA se desejar, para estimar uma tendência média não-zero. O modelo ARIMA (0,1,1) com constante tem a equação de predição: As previsões de um período de adiantamento deste modelo são qualitativamente semelhantes às do modelo SES, exceto que a trajetória das previsões de longo prazo é tipicamente uma Inclinada (cuja inclinação é igual a mu) em vez de uma linha horizontal. ARIMA (0,2,1) ou (0,2,2) sem suavização exponencial linear constante: Os modelos lineares de suavização exponencial são modelos ARIMA que utilizam duas diferenças não sazonais em conjunto com os termos MA. A segunda diferença de uma série Y não é simplesmente a diferença entre Y e ela mesma retardada por dois períodos, mas sim é a primeira diferença da primeira diferença - i. e. A mudança na mudança de Y no período t. Assim, a segunda diferença de Y no período t é igual a (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Uma segunda diferença de uma função discreta é análoga a uma segunda derivada de uma função contínua: ela mede a quotaccelerationquot ou quotcurvaturequot na função em um dado ponto no tempo. O modelo ARIMA (0,2,2) sem constante prevê que a segunda diferença da série é igual a uma função linear dos dois últimos erros de previsão: que pode ser rearranjada como: onde 952 1 e 952 2 são MA (1) e MA (2) coeficientes. Este é um modelo de suavização exponencial linear geral. Essencialmente o mesmo que Holt8217s modelo, e Brown8217s modelo é um caso especial. Ele usa médias móveis exponencialmente ponderadas para estimar um nível local e uma tendência local na série. As previsões a longo prazo deste modelo convergem para uma linha recta cujo declive depende da tendência média observada no final da série. ARIMA (1,1,2) sem suavização exponencial linear de tendência amortecida constante. Este modelo é ilustrado nos slides acompanhantes nos modelos ARIMA. Ele extrapola a tendência local no final da série, mas aplana-lo em horizontes de previsão mais longos para introduzir uma nota de conservadorismo, uma prática que tem apoio empírico. Veja o artigo sobre "Por que a tendência de amortecimento" trabalha por Gardner e McKenzie e o artigo de "Rule of Gold" de Armstrong et al. para detalhes. É geralmente aconselhável aderir a modelos nos quais pelo menos um de p e q não é maior do que 1, ou seja, não tente encaixar um modelo como ARIMA (2,1,2), uma vez que isto é susceptível de conduzir a sobre-adaptação E quotcommon-factorquot questões que são discutidas em mais detalhes nas notas sobre a estrutura matemática dos modelos ARIMA. Implementação de planilhas: modelos ARIMA como os descritos acima são fáceis de implementar em uma planilha. A equação de predição é simplesmente uma equação linear que se refere a valores passados ​​de séries temporais originais e valores passados ​​dos erros. Assim, você pode configurar uma planilha de previsão ARIMA armazenando os dados na coluna A, a fórmula de previsão na coluna B e os erros (dados menos previsões) na coluna C. A fórmula de previsão em uma célula típica na coluna B seria simplesmente Uma expressão linear referindo-se a valores nas linhas precedentes das colunas A e C, multiplicadas pelos coeficientes AR ou MA apropriados armazenados em outras células na planilha. As médias móveis são mais do que o estudo de uma seqüência de números em ordem sucessiva. Os primeiros praticantes da análise de séries temporais estavam mais preocupados com números de séries temporais individuais do que com a interpolação desses dados. Interpolação. Na forma de teorias de probabilidade e análise, veio muito mais tarde, à medida que os padrões foram desenvolvidos e as correlações descobertas. Uma vez compreendidas, várias curvas e linhas em forma foram desenhadas ao longo da série de tempo numa tentativa de prever onde os pontos de dados poderiam ir. Estes são agora considerados métodos básicos atualmente utilizados pelos comerciantes de análise técnica. Análise de gráficos pode ser rastreada até o século 18 Japão, mas como e quando as médias móveis foram aplicadas pela primeira vez aos preços de mercado continua a ser um mistério. É geralmente entendido que as médias móveis simples (SMA) foram usadas muito antes de médias móveis exponenciais (EMA), porque EMAs são construídos em SMA quadro eo continuum SMA foi mais facilmente compreendido para fins de plotagem e acompanhamento. Média Móvel Simples (SMA) As médias móveis simples tornaram-se o método preferido para rastrear os preços de mercado porque são rápidos de calcular e fáceis de entender. Os primeiros praticantes de mercado operavam sem o uso de métricas de gráficos sofisticados em uso hoje, então eles dependiam principalmente dos preços de mercado como seus únicos guias. Eles calcularam os preços de mercado à mão, e graficou esses preços para denotar tendências e direção do mercado. Este processo foi bastante tedioso, mas provou ser bastante rentável com a confirmação de estudos futuros. Para calcular uma média móvel simples de 10 dias, basta adicionar os preços de fechamento dos últimos 10 dias e dividir por 10. A média móvel de 20 dias é calculada adicionando os preços de fechamento ao longo de 20 dias e dividindo por 20 e em breve. Esta fórmula não é apenas baseada em preços de fechamento, mas o produto é uma média de preços - um subconjunto. As médias móveis são chamadas de movimento porque o grupo de preços usado no cálculo se move de acordo com o ponto no gráfico. Isto significa dias velhos são deixados cair em favor de dias novos do preço de fechamento, assim que um cálculo novo é sempre necessário que corresponde ao frame de tempo da média empregada. Assim, uma média de 10 dias é recalculada adicionando o novo dia e deixando cair o 10o dia, eo nono dia é deixado cair no segundo dia. (EMA) A média móvel exponencial tem sido refinado e mais comumente usado desde a década de 1960, graças aos experimentos anteriores praticantes com o computador. A nova EMA se concentraria mais nos preços mais recentes do que em uma longa série de pontos de dados, como a média móvel simples exigida. EMA atual ((Preço (atual) - EMA anterior)) X multiplicador) EMA anterior. O fator mais importante é a constante de suavização que 2 (1N) onde N é o número de dias. Uma EMA de 10 dias 2 (101) 18.8 Isso significa que uma EMA de 10 períodos pondera o preço mais recente 18,8, um EMA de 20 dias de 9,52 e um peso de EMA de 50 dias de 3,92 no dia mais recente. A EMA trabalha ponderando a diferença entre o preço dos períodos atuais e a EMA anterior e adicionando o resultado à EMA anterior. Quanto mais curto o período, mais peso é aplicado ao preço mais recente. Fitting Lines Por estes cálculos, pontos são plotados, revelando uma linha de montagem. Linhas de montagem acima ou abaixo do preço de mercado significam que todas as médias móveis são indicadores de atraso. E são usados ​​principalmente para seguir as tendências. Eles não funcionam bem com os mercados de gama e períodos de congestionamento, porque as linhas de montagem não denotam uma tendência devido a uma falta de maiores ou mais baixos evidentes baixos. Além disso, linhas de encaixe tendem a permanecer constantes sem sugestão de direção. Uma linha de montagem crescente abaixo do mercado significa um longo, enquanto uma linha de montagem caindo acima do mercado significa um curto. (Para obter um guia completo, leia nosso Tutorial de Moving Average.) O objetivo de empregar uma média móvel simples é detectar e mensurar as tendências alisando os dados usando os meios de vários grupos de preços. Uma tendência é manchada e extrapolada em uma previsão. O pressuposto é que os movimentos de tendências anteriores continuarão. Para a média móvel simples, uma tendência de longo prazo pode ser encontrada e seguida muito mais fácil do que uma EMA, com suposição razoável de que a linha de ajuste será mais forte do que uma linha de EMA devido ao foco mais longo sobre os preços médios. Um EMA é usado para capturar movimentos de tendência mais curtos, devido ao foco nos preços mais recentes. Por este método, um EMA suposto para reduzir quaisquer defasagens na média móvel simples para que a linha de ajuste vai abraçar os preços mais perto do que uma simples média móvel. O problema com a EMA é o seguinte: o seu propenso a pausas de preços, especialmente durante os mercados rápidos e períodos de volatilidade. A EMA funciona bem até que os preços rompam a linha de montagem. Durante os mercados de maior volatilidade, você poderia considerar o aumento da duração do termo médio móvel. Pode-se até mudar de um EMA para um SMA, uma vez que o SMA suaviza os dados muito melhor do que um EMA devido ao seu foco em meios de longo prazo. Indicadores de Tendência Como indicadores de atraso, as médias móveis servem bem como linhas de suporte e resistência. Se os preços despencarem abaixo de uma linha de 10 dias de ajuste em uma tendência ascendente, as chances são boas de que a tendência de alta pode estar diminuindo, ou pelo menos o mercado pode estar se consolidando. Se os preços quebrar acima de uma média móvel de 10 dias em uma tendência de baixa. A tendência pode estar diminuindo ou se consolidando. Nestes casos, empregue uma média móvel de 10 e 20 dias em conjunto e aguarde a linha de 10 dias cruzar acima ou abaixo da linha de 20 dias. Isso determina a próxima direção de curto prazo para os preços. Para períodos de longo prazo, observe as médias móveis de 100 e 200 dias para direções de longo prazo. Por exemplo, usando as médias móveis de 100 e 200 dias, se a média móvel de 100 dias cruza abaixo da média de 200 dias, sua chamada cruz de morte. E é muito bearish para preços. Uma média móvel de 100 dias que ultrapassa uma média móvel de 200 dias é chamada de cruz de ouro. E é muito otimista para os preços. Não importa se um SMA ou um EMA é usado, porque ambos são indicadores de tendência seguinte. É apenas a curto prazo que a SMA tem ligeiros desvios em relação à sua contraparte, a EMA. Conclusão As médias móveis são a base da análise de gráficos e séries temporais. As médias móveis simples e as médias móveis exponenciais mais complexas ajudam a visualizar a tendência alisando os movimentos de preços. A análise técnica é por vezes referida como uma arte em vez de uma ciência, que levam anos para dominar. (Saiba mais em nosso Tutorial de Análise Técnica.) Uma medida da relação entre uma mudança na quantidade demandada de um bem particular e uma mudança em seu preço. Preço. O valor de mercado total do dólar de todas as partes em circulação de uma companhia. A capitalização de mercado é calculada pela multiplicação. Frexit curto para quotFrancês exitquot é um spin-off francês do termo Brexit, que surgiu quando o Reino Unido votou. Uma ordem colocada com um corretor que combina as características de ordem de parada com as de uma ordem de limite. Uma ordem de stop-limite será. Uma rodada de financiamento onde os investidores comprar ações de uma empresa com uma avaliação menor do que a avaliação colocada sobre a. Uma teoria econômica da despesa total na economia e seus efeitos no produto e na inflação. A economia keynesiana foi desenvolvida. Modelos de média móvel e de suavização exponencial Como um primeiro passo para ir além dos modelos de média, modelos de caminhada aleatória e modelos de tendência linear, padrões e tendências não sazonais podem ser extrapolados usando um modelo de média móvel ou suavização. A suposição básica por trás dos modelos de média e suavização é que a série temporal é estacionária localmente com uma média lentamente variável. Assim, tomamos uma média móvel (local) para estimar o valor atual da média e, em seguida, usá-lo como a previsão para o futuro próximo. Isto pode ser considerado como um compromisso entre o modelo médio eo modelo randômico-sem-deriva. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel é chamada frequentemente uma versão quotsmoothedquot da série original porque a média de curto prazo tem o efeito de alisar para fora os solavancos na série original. Ajustando o grau de suavização (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ótimo entre o desempenho dos modelos de caminhada média e aleatória. O tipo mais simples de modelo de média é o. Média Móvel Simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para ficar Para uma previsão da série de tempo Y feita o mais cedo possível antes de um determinado modelo). Esta média é centrada no período t (m1) 2, o que implica que a estimativa da média local tende a ficar aquém do verdadeiro Valor da média local em cerca de (m1) 2 períodos. Dessa forma, dizemos que a média de idade dos dados na média móvel simples é (m1) 2 em relação ao período para o qual a previsão é calculada: é a quantidade de tempo que as previsões tendem a ficar atrás de pontos de viragem nos dados . Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados ​​em responder a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m é muito grande (comparável ao comprimento do período de estimação), o modelo SMA é equivalente ao modelo médio. Como com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot aos dados, isto é, os erros de previsão mais baixos em média. Aqui está um exemplo de uma série que parece apresentar flutuações aleatórias em torno de uma média de variação lenta. Primeiro, vamos tentar encaixá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de 1 termo: O modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo escolhe grande parte do quotnoisequot na Dados (as flutuações aleatórias), bem como o quotsignalquot (a média local). Se preferirmos tentar uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais suaves: a média móvel simples de 5 períodos produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nessa previsão é 3 ((51) 2), de modo que ela tende a ficar atrás de pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não virar até vários períodos mais tarde.) Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões a partir do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. Os limites de confiança calculados pela Statgraphics para as previsões de longo prazo da média móvel simples não se alargam à medida que o horizonte de previsão aumenta. Isto obviamente não é correto Infelizmente, não há uma teoria estatística subjacente que nos diga como os intervalos de confiança devem se ampliar para este modelo. No entanto, não é muito difícil calcular estimativas empíricas dos limites de confiança para as previsões de longo prazo. Por exemplo, você poderia configurar uma planilha na qual o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc. dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e então construir intervalos de confiança para previsões de longo prazo adicionando e subtraindo múltiplos do desvio padrão apropriado. Se tentarmos uma média móvel simples de 9 termos, obteremos previsões ainda mais suaves e mais de um efeito retardado: A idade média é agora de 5 períodos ((91) 2). Se tomarmos uma média móvel de 19 períodos, a idade média aumenta para 10: Observe que, na verdade, as previsões estão agora atrasadas por pontos de viragem por cerca de 10 períodos. A quantidade de suavização é melhor para esta série Aqui está uma tabela que compara suas estatísticas de erro, incluindo também uma média de 3-termo: Modelo C, a média móvel de 5-termo, rende o menor valor de RMSE por uma pequena margem sobre o 3 E médias de 9-termo, e suas outras estatísticas são quase idênticas. Assim, entre modelos com estatísticas de erro muito semelhantes, podemos escolher se preferiríamos um pouco mais de resposta ou um pouco mais de suavidade nas previsões. O modelo de média móvel simples descrito acima tem a propriedade indesejável de tratar as últimas k observações de forma igual e ignora completamente todas as observações anteriores. (Voltar ao início da página.) Browns Simple Exponential Smoothing (média ponderada exponencialmente ponderada) Intuitivamente, os dados passados ​​devem ser descontados de forma mais gradual - por exemplo, a observação mais recente deve ter um pouco mais de peso que a segunda mais recente, ea segunda mais recente deve ter um pouco mais de peso do que a 3ª mais recente, e em breve. O modelo de suavização exponencial simples (SES) realiza isso. Vamos 945 denotar uma constante quotsmoothingquot (um número entre 0 e 1). Uma maneira de escrever o modelo é definir uma série L que represente o nível atual (isto é, o valor médio local) da série, conforme estimado a partir dos dados até o presente. O valor de L no tempo t é calculado recursivamente a partir de seu próprio valor anterior como este: Assim, o valor suavizado atual é uma interpolação entre o valor suavizado anterior e a observação atual, onde 945 controla a proximidade do valor interpolado para o mais recente observação. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. Na primeira versão, a previsão é uma interpolação entre previsão anterior e observação anterior: Na segunda versão, a próxima previsão é obtida ajustando a previsão anterior na direção do erro anterior por uma fração 945. é o erro feito em Tempo t. Na terceira versão, a previsão é uma média móvel exponencialmente ponderada (ou seja, descontada) com o fator de desconto 1- 945: A versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: ela se encaixa em um Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior ea célula onde o valor de 945 é armazenado. Observe que se 945 1, o modelo SES é equivalente a um modelo de caminhada aleatória (sem crescimento). Se 945 0, o modelo SES é equivalente ao modelo médio, assumindo que o primeiro valor suavizado é definido igual à média. A idade média dos dados na previsão de suavização exponencial simples é de 1 945 em relação ao período para o qual a previsão é calculada. (Isso não é suposto ser óbvio, mas pode ser facilmente demonstrado pela avaliação de uma série infinita.) Portanto, a previsão média móvel simples tende a ficar para trás de pontos de viragem em cerca de 1 945 períodos. Por exemplo, quando 945 0,5 o atraso é 2 períodos quando 945 0,2 o atraso é de 5 períodos quando 945 0,1 o atraso é de 10 períodos, e assim por diante. Para uma determinada idade média (isto é, a quantidade de atraso), a previsão de suavização exponencial simples (SES) é um pouco superior à previsão de média móvel simples (SMA) porque coloca relativamente mais peso na observação mais recente - i. e. É ligeiramente mais quotresponsivequot às mudanças que ocorrem no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 têm uma idade média de 5 para os dados nas suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no modelo SMA. Uma outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, de modo que pode ser otimizado com facilidade Usando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor óptimo de 945 no modelo SES para esta série revela-se 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é 10.2961 3.4 períodos, que é semelhante ao de uma média móvel simples de 6-termo. As previsões a longo prazo do modelo SES são uma linha reta horizontal. Como no modelo SMA e no modelo randômico sem crescimento. No entanto, note que os intervalos de confiança calculados por Statgraphics agora divergem de uma forma razoável, e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um tanto quotmore previsível do que o modelo de caminhada aleatória. Um modelo SES é realmente um caso especial de um modelo ARIMA. Assim a teoria estatística dos modelos ARIMA fornece uma base sólida para o cálculo de intervalos de confiança para o modelo SES. Em particular, um modelo SES é um modelo ARIMA com uma diferença não sazonal, um termo MA (1) e nenhum termo constante. Também conhecido como modelo quotARIMA (0,1,1) sem constantequot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1-945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante para a série aqui analisada, o coeficiente MA estimado (1) resulta ser 0,7029, que é quase exatamente um menos 0,2961. É possível adicionar a hipótese de uma tendência linear constante não-zero para um modelo SES. Para fazer isso, basta especificar um modelo ARIMA com uma diferença não sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. As previsões a longo prazo terão então uma tendência que é igual à tendência média observada durante todo o período de estimação. Você não pode fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. No entanto, você pode adicionar uma tendência exponencial de longo prazo constante a um modelo de suavização exponencial simples (com ou sem ajuste sazonal) usando a opção de ajuste de inflação no procedimento de Previsão. A taxa adequada de inflação (crescimento percentual) por período pode ser estimada como o coeficiente de declive num modelo de tendência linear ajustado aos dados em conjunto com uma transformação de logaritmo natural, ou pode basear-se em outra informação independente sobre as perspectivas de crescimento a longo prazo . (Voltar ao início da página.) Browns Linear (ie duplo) Suavização exponencial Os modelos SMA e SES assumem que não há tendência de qualquer tipo nos dados (o que normalmente é OK ou pelo menos não muito ruim para 1- Antecipadamente quando os dados são relativamente ruidosos), e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. O que acontece com as tendências de curto prazo Se uma série exibir uma taxa de crescimento variável ou um padrão cíclico que se destaque claramente contra o ruído, e se houver uma necessidade de prever mais do que um período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de suavização exponencial simples pode ser generalizado para obter um modelo linear de suavização exponencial (LES) que calcula as estimativas locais de nível e tendência. O modelo de tendência de variação de tempo mais simples é o modelo de alisamento exponencial linear de Browns, que usa duas séries suavizadas diferentes que são centradas em diferentes pontos do tempo. A fórmula de previsão é baseada em uma extrapolação de uma linha através dos dois centros. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo.) A forma algébrica do modelo de suavização exponencial linear de Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em várias formas diferentes mas equivalentes. A forma quotstandard deste modelo é usualmente expressa da seguinte maneira: Seja S a série de suavização simples obtida aplicando-se a suavização exponencial simples à série Y. Ou seja, o valor de S no período t é dado por: (Lembre-se que, Exponencial, esta seria a previsão para Y no período t1.) Então deixe Squot denotar a série duplamente-alisada obtida aplicando a suavização exponencial simples (usando o mesmo 945) à série S: Finalmente, a previsão para Y tk. Para qualquer kgt1, é dado por: Isto resulta em e 1 0 (isto é, enganar um pouco, e deixar a primeira previsão igual à primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. Isto produz os mesmos valores ajustados que a fórmula baseada em S e S se estes últimos foram iniciados utilizando S 1 S 1 Y 1. Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Smoothing Brown8217s O modelo LES calcula as estimativas locais de nível e tendência ao suavizar os dados recentes, mas o fato de que ele faz isso com um único parâmetro de suavização coloca uma restrição nos padrões de dados que é capaz de ajustar: o nível ea tendência Não podem variar em taxas independentes. Holt8217s modelo LES aborda esta questão, incluindo duas constantes de alisamento, um para o nível e um para a tendência. Em qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui eles são calculados recursivamente a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam alisamento exponencial para eles separadamente. Se o nível estimado ea tendência no tempo t-1 são L t82091 e T t-1. Respectivamente, então a previsão para Y tshy que teria sido feita no tempo t-1 é igual a L t-1 T t-1. Quando o valor real é observado, a estimativa atualizada do nível é calculada recursivamente pela interpolação entre Y tshy e sua previsão, L t-1 T t-1, usando pesos de 945 e 1-945. A mudança no nível estimado, Nomeadamente L t 8209 L t82091. Pode ser interpretado como uma medida ruidosa da tendência no tempo t. A estimativa actualizada da tendência é então calculada recursivamente pela interpolação entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: A interpretação da constante de suavização de tendência 946 é análoga à da constante de suavização de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda apenas muito lentamente ao longo do tempo, enquanto modelos com Maior 946 supor que está mudando mais rapidamente. Um modelo com um 946 grande acredita que o futuro distante é muito incerto, porque os erros na tendência-estimativa tornam-se completamente importantes ao prever mais de um período adiante. As constantes de suavização 945 e 946 podem ser estimadas da maneira usual minimizando o erro quadrático médio das previsões de 1 passo à frente. Quando isso é feito em Statgraphics, as estimativas se tornam 945 0,3048 e 946 0,008. O valor muito pequeno de 946 significa que o modelo assume muito pouca mudança na tendência de um período para o outro, então basicamente este modelo está tentando estimar uma tendência de longo prazo. Por analogia com a noção de idade média dos dados que é utilizada na estimativa do nível local da série, a idade média dos dados que são utilizados na estimativa da tendência local é proporcional a 1 946, embora não exatamente igual a . Neste caso, isto é 10.006 125. Isto não é um número muito preciso, na medida em que a precisão da estimativa de 946 é realmente de 3 casas decimais, mas é da mesma ordem geral de magnitude que o tamanho da amostra de 100, portanto Este modelo está calculando a média sobre bastante muita história em estimar a tendência. O gráfico de previsão abaixo mostra que o modelo LES estima uma tendência local ligeiramente maior no final da série do que a tendência constante estimada no modelo SEStrend. Além disso, o valor estimado de 945 é quase idêntico ao obtido pela montagem do modelo SES com ou sem tendência, de modo que este é quase o mesmo modelo. Agora, eles parecem previsões razoáveis ​​para um modelo que é suposto ser estimar uma tendência local Se você 8220eyeball8221 esse enredo, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foram calculados minimizando o erro quadrático das previsões de um passo à frente, e não as previsões a mais longo prazo, caso em que a tendência não faz muita diferença. Se tudo o que você está olhando são 1-passo-frente erros, você não está vendo a imagem maior de tendências sobre (digamos) 10 ou 20 períodos. A fim de obter este modelo mais em sintonia com a nossa extrapolação do globo ocular dos dados, podemos ajustar manualmente a tendência de alisamento constante para que ele usa uma linha de base mais curto para a estimativa de tendência. Por exemplo, se escolhemos definir 946 0,1, então a idade média dos dados usados ​​na estimativa da tendência local é de 10 períodos, o que significa que estamos fazendo a média da tendência ao longo dos últimos 20 períodos. Here8217s o que o lote de previsão parece se definimos 946 0,1, mantendo 945 0,3. Isso parece intuitivamente razoável para esta série, embora seja provavelmente perigoso para extrapolar esta tendência mais de 10 períodos no futuro. E sobre as estatísticas de erro Aqui está uma comparação de modelos para os dois modelos mostrados acima, bem como três modelos SES. O valor ótimo de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com ligeiramente mais ou menos responsividade, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. Alisamento com alfa 0,3048 e beta 0,008 (B) Holts linear exp. Alisamento com alfa 0,3 e beta 0,1 (C) Suavização exponencial simples com alfa 0,5 (D) Suavização exponencial simples com alfa 0,3 (E) Suavização exponencial simples com alfa 0,2 Suas estatísticas são quase idênticas, portanto, realmente não podemos fazer a escolha com base De erros de previsão de 1 passo à frente dentro da amostra de dados. Temos de recorrer a outras considerações. Se acreditarmos firmemente que faz sentido basear a estimativa de tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se queremos ser agnósticos quanto à existência de uma tendência local, então um dos modelos do SES pode ser mais fácil de explicar e também dar mais previsões de médio-caminho para os próximos 5 ou 10 períodos. Evidências empíricas sugerem que, se os dados já tiverem sido ajustados (se necessário) para a inflação, então pode ser imprudente extrapolar os resultados lineares de curto prazo Muito para o futuro. As tendências evidentes hoje podem afrouxar no futuro devido às causas variadas tais como a obsolescência do produto, a competição aumentada, e os abrandamentos cíclicos ou as ascensões em uma indústria. Por esta razão, a suavização exponencial simples geralmente desempenha melhor fora da amostra do que poderia ser esperado, apesar de sua extrapolação de tendência horizontal quotnaivequot. Modificações de tendência amortecida do modelo de suavização exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. O modelo LES com tendência a amortecimento pode ser implementado como um caso especial de um modelo ARIMA, em particular, um modelo ARIMA (1,1,2). É possível calcular intervalos de confiança em torno de previsões de longo prazo produzidas por modelos exponenciais de suavização, considerando-os como casos especiais de modelos ARIMA. A largura dos intervalos de confiança depende de (i) o erro RMS do modelo, (ii) o tipo de suavização (simples ou linear) (iii) o valor (S) da (s) constante (s) de suavização e (iv) o número de períodos à frente que você está prevendo. Em geral, os intervalos se espalham mais rapidamente à medida que o 945 fica maior no modelo SES e eles se espalham muito mais rápido quando se usa linear ao invés de alisamento simples. Este tópico é discutido mais adiante na seção de modelos ARIMA das notas. (Voltar ao topo da página.)

No comments:

Post a Comment